code | type | # of levels | min spacing | max spacing |
AWI | z | 33 | 10m | 356m |
GSFC | sigma | 20 | 0.00125 | 0.2 |
ICMMG | z | 33 | 10m | 500m |
IOS | z | 29 | 10m | 290m |
LANL | z | 40 | 10m | 250m |
LU | z | 29 | 10m | 290m |
NERSC | layer | 26 | ||
NPS | z | 30 | 20m | 200m |
NYU | layer | 11 | ~ 0.5m * | ~ 500m |
POL | z | 26 | 5m | 500m |
RAS | z | 16 | 10m | 1000m |
RCO | z | 59 | 3m | 200m |
UCL | z | 31 | 10m | 500m |
UW | z | 21 | 10m | 790m |
* formulated in layers, depth spacing can be less than 1m or up to 5000m (max depth)
code | type | # of nodes | min spacing | max spacing | domain |
AWI | B, rotated spherical | = 41310 | 25.8km | 27.8km | 50N Atl to Bering Str |
GSFC | ?, rotated spherical | ? | 0.7° | 0.9° | 16S Atl to Bering Str |
ICMMG | spherical+bipolar | 140 x 180 | 35 km | 1 ° | Atl.+ Arctic |
IOS | B, rotated spherical | 91 x 67 = 6097 |
0.5° | 55km | GINS to Bering Str |
LANL | B, general curvilinear | 900 x 600 = 54000 | 9 km | 44 km | global |
LU | B, rotated spherical | 105 x 112=11760 |
0.5° | 55km | 50N Atl to Bering Str |
NERSC | B(ice),C(ocean) | 196 x 360 | 22.2km | 270km | global |
NPS | B, rotated spherical | 384 x 304 = 116736 | 1/6° | 18.5km | 50N Atl to Bering Str |
NYU | C, rotated spherical | 60 x 60 = 3600 | 1.0° | 111km | to 30° from NorthPole |
POL | B, rotated spherical | 120 x 129 = 15489 | 30km | 300km | global |
RAS | A, spherical finite element | 35 x 49 = 1715 | 1.0° | 111km | 65N Atl to Bering Str |
RCO | B, rotated spherical | 152 x 113 | 0.5° | 55km | 50N to Aleutian inc Bering Sea |
UCL | B(ice),C(ocean) curvilinear | 142 x 149 = 27118 | 47 km | 222km | global |
UW | B, rotated spherical | 130 x 102 = 13260 | ~ 40km | ~ 40km | Arctic + GINS |
code | types | ocean momentum Dt | ocean tracer Dt | sea ice Dt |
AWI | LF | 900s | 900s | 900s |
GSFC | LF | ? | ? | ? |
ICMMG | split | 14400s | 14400s | 10800s |
IOS | LF + F + PC | 43200s * | 43200s | 43200s |
LANL | LF + F | 1800s | 1800s | 1800s + 15s |
LU | LF + PC + F | 21600s * | 21600s | 21600s |
NERSC | filtered LF | 1600s | 1600s | 1600s** |
NPS | LF + F | 1200s | 1200s | 7200s |
NYU | filtered LF | 7200s + 1200s | 7200s | 7200s |
POL | LF+Asselin+EE+IE | 1440s + 239s | 43200s | 43200s |
RAS | IE + EE | 7200s | 7200s | 7200s w/ 120 substeps |
RCO | LF+EB | 600s + 10s | 600s | 15s |
UCL | LF + F | 5760s | 5760s | 17280s |
UW | LF | 720s | 720s | 5400s |
LF=leapfrog, PC=predict-correct, F=forward, IE=implicit Euler, EE=explicit
Euler
*IOS: actual Dt is 12 hr. "apparent" Dt for momentum is 900s after
Bryan (1984).
**NERSC: sea ice velocitites are updated daily as a steady state balance of forces,while ice scalar properties are advected with Dt=1600s
code | upper surface | tides? | benthic layer? |
AWI | rigid lid, streamfunction | no | no |
GSFC | explicit free surface | no | yes, not well resolved |
ICMMG | rigid lid, streamfunction | no | |
IOS | rigid lid, streamfunction | parametric | yes |
LANL | implicit free surface | no | no |
LU | rigid lid, streamfunction | no | yes |
NERSC | explicit free surface | no | no |
NPS | implicit free surface | no | no |
NYU | explicit free surface | no | |
POL | explicit nonlinear free surface | no | Campin and Goosse (1999) |
RAS | linear / implicit sea level | no | no |
RCO | explicit free surface | no | no |
UCL | free surface | no | parametric |
UW | rigid lid, streamfunction | no |
code | locations | condition | transports (Sv) |
AWI | N Atlantic only | radiation | none |
GSFC | Bering, S Atlantic | radiation | Bering 0.8 in |
ICMMG | Bering, Atlantic | Neumann | Bering 0.8 in |
IOS | Bering, Baffin Bay, GINSea | Dirchlet + Neumann | Bering 0.8 in, Baffin 1.0 out, GINS 0.2 in |
LANL | global domain | n/a | n/a |
LU | Bering, N Atlantic | Dirchlet + Neumann | Bering 1.0 in |
NERSC | global domain` | n/a | n/a |
NPS | all closed + restoring | restoring | none |
NYU | N Atlantic, N Pacific | restoring | transports not specified |
POL | global domain | ||
RAS | Bering, M'Clure, Nares, Denmark | radiation T&S, specified V | Bering 0.8 in, M'Clure 0.8 out, Nares, 0.7 out * |
RCO | N Atlantic only | radiation (Stevens, 1990) | none |
UCL | global domain | n/a | n/a |
UW | Bering, Davis, Denmark, Faero-Shetland | Zhang et al 1997 | Bering 0.8 in, Atlantic 0.8 out |
* RAS: also Norwegian 6.0 in, Denmark 5.4415 out - to compensate river inflow.
code | source | modifications | min depth | max depth |
AWI | IBCAO | deepened some channels | 30 m | 4800 m |
GSFC | TerrainBase Global DTM | extensive smoothing | 50 m | 6000 m |
ICMMG | IBCAO | deepened some channels | 50 m | 5500 m |
IOS | IBCAO + ETOPO5 | widened Nares Strait | 30 m | 4345 m |
LANL | IBCAO + Smith&Sandwell | pointwise changes | 20 m | 5500 m |
LU | IBCAO + ETOPO5 | widened some straits | 30 m | 4345 m |
NERSC | GEBCO | modified some sill depths | 50m | 7505m |
NPS | IBCAO + ETOPO5 | widened some straits | 45 m | 4300 m |
NYU | IBCAO + ETOPO5 | none | 20 m | 5000 m |
POL | IBCAO + ETOPO5 | some | 15m | 5500m |
RAS | Polyakov | smoothing, opened straits | 25 m | 4000 m |
RCO | ETOPO5 | some | 6m | 5000m |
UCL | ETOPO5 | pointwise | 20 m | 5500 m |
UW | IBCAO + ETOPO5 | ? | 75 m | ? |
Note: all z-level models use full-cell depth representation.
code | source |
AWI | 3rd oder polynomial fit to Knudsen |
GSFC | Mellor, 1991 |
ICMMG | Gill 1982 |
IOS | UNESCO 1981 |
LANL | UNESCO 1981, Jackett and McDougal 1995 |
LU | UNESCO 1981 |
NERSC | Brydon, Sun and Bleck`1999 |
NPS | UNESCO, Parsons, 1995 |
NYU | Brydon, Bleck, and Sun, 1999 |
POL | UNESCO 1983, Jackett and McDougal 1995 |
RAS | Gill 1982, Appendix 3. |
RCO | 3rd order polynomial fit to UNESCO formula (Bryan and Cox, 1972) |
UCL | UNESCO 1983, Jackett and McDougal 1995 |
UW | Bryan and Cox, 1972 |
code | vertical | horizontal | bottom |
AWI | constant, 10 cm2/s | biharmonic, A4=0.5e-21 cm4/s | quadratic, 1.2e-3 |
GSFC | |||
ICMMG | constant, 50 cm2/s | neptune | linear |
IOS | neptune, up to 1 m2/s | neptune, L=3.5e3 m, A2=4.e4 m2/s | quadratic, 1.2e-3 |
LANL | 10 x tracer KPP | biharmonic, A4=1.e20 cm4/s | quadratic, 1.22e-3 |
LU | neptune, 300 cm2/s | neptune, L=3.5e3 m, A2=5e8 cm2/s | quadratic, 1.2e-3 |
NERSC | 10 x background tracer | laplacian | quadratic |
NPS | Pacanowski & Philander | biharmonic, A4=1.e-19 cm4/s | |
NYU | interlayer, 1.e-5 m/s2 | laplacian, propto grid space | quadratic |
POL | KPP + constant 10cm2/s | neptune + Smagorinsky | none |
RAS | Pacanowski & Philander | laplacian, A2=2.e4 m2/s | quadratic, 1.2e-3 |
RCO | k-epsilon (Meier, 2001) | laplacian 5.e3 m2/s | quadratic 1.25e-3 |
UCL | 1.5L turbulence scheme | laplacian, A2=4.e4 m2/s | linear, 115day |
UW | constant, 0.05 cm2/s | laplacian, A2=1.2e8 cm2/s | none |
code | vertical | lateral | convection |
AWI | none (see advection) | none (see advection) | complete |
GSFC | |||
ICMMG | Bryan & Lewis, 1979 | laplacian, 1000 to 500 m2/s | based on Richardson no. |
IOS | internal wave & double diffusion (Merryfield et al, 1999) | laplacian, to 500 m2/s | complete |
LANL | KPP, no double diffusion | isopycnal-GM, K=2400 m2/s | high diff., 0.1 m2/s |
LU | as IOS | laplacian, 5e4 | complete |
NERSC | stability dependent + gravity entrainment | laplacian, prop to grid space | inflating first layer if denser |
NPS | Pacanowski & Philander | biharmonic, 4.e18 cm4/s | Semtner, 1974 |
NYU | McDougal & Dewar, 1998 | laplacian, propto grid space | Holland and Jenkins, 2001 |
POL | KPP + Gargett & Holloway 1984 | isopycnal-GM | complete |
RAS | Pacanowski & Philander, .1 cm2/s | upwind-strmline, bkgnd 50 m2/s | high diff., 0.02 m2/s |
RCO | k-epsilon (Meier, 2001) | laplacian 5.e2 m2/s | k-epsilon (Meier, 2001) |
UCL | 1.5L turbulence scheme | isopycnal-GM, K=2000 m2/s | enhanced diffusion |
UW | constant, 0.05 cm2/s | laplacian, 0.4e6 cm2/s | ? |
GSFC sigma models: diffusivity tensor rotation ?
NYU: Layer thickness diffusion is used. Diffusivity is 0.01 m/s times horizontal
grid spacing.
Convection based on available potential energy ()
code | ocean tracers | ocean momentum | sea ice & snow |
AWI | FCT (Gerdes, Koberle, Willebrand, 1991) | centered difference | corrected upstream (Smolarkiewicz, 1983) |
GSFC | Lin et al 1994 | ? | ? |
OCMMG | linear FE | upstream viscosity | upstream + remap |
IOS | modified Prather (1986) | centered difference | modified Prather (Merryfield & Holloway, 2002) |
LANL | 3rd order upwind | centered difference | incremental remapping (Lipscomb & Hunke, 2004) |
LU | modified Prather SOM | centered difference | modified Prather SOM |
NERSC | MPDATA (Smolarkiwicz, 1984) | PV-conserving (Sadourny, 1975) | 3rd order WENO (Jiang & Shu, 1996) |
NPS | centered difference | centered difference | centered difference |
NYU | MPDATA (Smolarkiwicz, 1984) | PV-conserving (Sadourny) | MPDATA. (Smolarkiwicz, 1984) |
POL | modified Prather (1986) | centered difference | modified Prather (1986) |
RAS | upwind streamline | FE scheme | upwind streamline |
RCO | modified QUICK (Webb et al., 1998) | modified QUICK (Webb et al., 1998) | upstream |
UCL | centered 2nd order | centered 2nd order | 2nd order moments (Prather, 1986) |
UW | centered difference | centered difference | centered difference |
code | method |
AWI | restore only top layer S, 180d |
GSFC | only at open boundaries and the Mediterranean |
ICMMG | Bering Str T & S |
IOS | none |
LANL | top layer S, 180 d, first 11 years only |
LU | none |
NERSC | none |
NPS | T and S are restored, 120d & 365d |
NYU | restore top layer S and open boundaries |
POL | none in AOMIP domain |
RAS | restore top layer S, 180d |
RCO | none |
UCL | none (within AOMIP sub-domain) |
UW | T and S are restored, variously |
code | number explicit | unguaged, how? | volume or virtual salt? | temperature | total annual |
AWI | ? | salt sink | |||
GSFC | 86 | yes, randomly | salt sink | ||
ICMMG | 13 | proportionally among 13 rivers | volume | no | 3156 km3/a |
IOS | 13 | yes, separately along american, nordic and siberian coasts | salt sink | no | 3156 km3/a |
LANL | 14 Arctic, 46 global | no | salt sink | no | 2300 km3/a |
LU | ? | ? | salt sink | no | ? |
NERSC | continental runoff assigned to coast | salt sink | no | 47000 km3/a | |
NPS | 9 | no | salt sink | yes | 2012 km3/a |
NYU | none | no | restoring | ||
POL | S restore along coasts | volume | no | ~1.5 Sv (global) | |
RAS | 8 | volume | |||
RCO | 19 | yes, proportionally | volume | no | 3156 km3/a |
UCL | global | volume | |||
UW | ? | salt sink |
data sources-- AWI: AOMIP GSFC: Pocklington, RasmussonMo P-E data IOS: Prange
(per AOMIP)
LANL: GRDC http://www.awi-bremerhaven.de/Modelling/ARCTIC/projects/rivers/rivers.html
NPS: P.Becker + Canadian NYU: N/A RAS: AOMIP UW: "AOMIP"
UCL: Milliman and Heade (1983), Russek and Miller (1990), Van Der Leeden, Troise and Todd (1990), Weatherly and Walsh (1996), Jacobs et al. (1992)
code | variables | ice dynamics |
AWI | area fractions in 7 thickness bins | viscous plastic |
GSFC | area & thickness | general viscous |
ICMMG | area fractions in 5 thickness bins | elastic-viscous-plastic |
IOS | area, thickness | viscous plastic |
LANL | area fractions in 5 thickness bins*, ice energy, snow energy | elastic-viscous-plastic |
LU | area, thickness | viscous plastic |
NERSC | area & thickness, age | viscous plastic |
NPS | area & thickness | viscous plastic |
NYU | area & thickness, age | cavitating fluid |
POL | snow & ice area, volume, heat & age | elastic-viscous-plastic |
RAS | ice and snow mass in 8 thickness bins** | elastic-viscous-plastic |
RCO | area & thickness | elastic-viscous-plastic |
UCL | area & thickness, energy, brine | viscous plastic |
UW | area & thickness, ice enthalpy, distrib? | viscous plastic |
* LANL bin boundaries: .6445, 1.3914, 2.4702, 4.5673, 9.3338 m
** RAS bin boundaries: .1, .3, .7, 1.2, 2.0, 4.0, 6.0, 9.0 m
code | ice T profile | ice conductivity | ice salinity | snow T profile | snow conductivity |
AWI | linear | ? | 0 | linear | ? |
GSFC | ( layers ?) | ? | 5 ppt | (constant ?) | |
ICMMG | 4 layers | 2.03 W/m/K | function | linear | 0.3 W/m/K |
IOS | linear | 2.04 W/m/K | 4 ppt | linear | 0.31 W/m/K |
LANL | 4 layers | 2.03 W/m/K | function | linear | 0.3 W/m/K |
LU | linear | 2.04 W/m/K | 4 ppt | linear | 0.31 W/m/K |
NERSC | linear | 2.04 W/m/K | 6 ppt | linear | 0.31 W/m/K |
NPS | linear | ? | ? | no | |
NYU | linear | ? | 0 | linear | |
POL | parabolic | 2.03 W/m/K | 4 psu | parabolic | 0.22 W/m/K |
RAS | linear | 2.04 W/m/K | 4 ppt | linear | 0.31 W/m/K |
RCO | Semtner's 2-layer model | 2.0 W/m/K | 4 ppt | linear | 0.3 W/m/K |
UCL | 2 layers | 2.03 W/m/K + sgs* | 4 ppt | linear | 0.22 W/m/K |
UW | (no profile ?) | ? | 4 ppt | (no profile ?) | 0.31 W/m/K |
code | heat exchg | moisture exchg | momentum transfer | ocean mixed layer? |
AWI | none | |||
GSFC | bulk | bulk | turbulence scheme | |
ICMMG | bulk | bulk | bulk | integral Ri criterion |
IOS | 1.2e-3 | 1.5e-3 | assigned | assigned |
LANL | bulk | bulk | bulk | KPP |
LU | bulk | bulk | assigned | none |
NERSC | * | * | * | bulk (Gaspar, 1988) |
NPS | none | |||
NYU | bulk (Oberhuber, 1993) | bulk (Oberhuber, 1993) | bulk (Oberhuber, 1993) | bulk (Gaspar, 1988) |
POL | bulk (Large and Pond 1982) | bulk (Large and Pond 1982) | bulk (Large and Pond 1981) | KPP |
RAS | 25m, diff=100 cm2/s | |||
RCO | bulk (Large and Pond 1982) | bulk (Large and Pond 1982) | bulk (Large and Pond 1981) | included in k-epsilon |
UCL | bulk | bulk | bulk | 1.5L turbulence scheme |
UW | bulk (Zhang et al, 1998) |
* NERSC: NCEP/NCAR daily fluxes are used. If the model surface state differs from the NCEP/NCAR surface state, the fluxes are modified according to Bentsen and Drange (2000).
code | heat exchg | moisture exchg | momentum transfer |
AWI | |||
GSFC | |||
ICMMG | bulk | bulk | bulk |
IOS | 1.2e-3 | 1.5e-3 | |
LANL | 1.2e-3 | 1.5e-3 | 1.1+.04*wind |
LU | 1.2e-3 | 1.5e-3 | |
NERSC | * | * | * |
NPS | |||
NYU | |||
POL | bulk (Parkinson and Washington, 1979) | bulk (Parkinson and Washington, 1979) | bulk (Large and Pond, 1981) |
RAS | |||
RCO | bulk | bulk | bulk |
UCL | bulk | bulk | quadratic |
UW |
* NERSC: NCEP/NCAR daily fluxes are used. If the model surface state differs from the NCEP/NCAR surface state, the fluxes are modified according to Bentsen and Drange (2000).
code | ocean-ice heat exchg | ocean-ice FW exchg | ocean-ice momentum exchg |
AWI | |||
GSFC | |||
ICMMG | same as LANL | same as LANL | same as LANL |
IOS | linear in ocean T - freezing T | virtual salt flux, ice at 4 ppt | quadratic, Cd=5.5e-3 |
LANL | * | virtual salt flux, ice at 4 ppt | quadratic, Cd=5.5e-3 |
LU | linear in ocean T - freezing T | virtual salt flux, ice at 4 ppt | quadratic, Cd=5.5e-3 |
NERSC | linear in To and Tf (Maykut and McPhee, 1995) | virtual salt flux, ice at 6ppt | quadratic, Cd=5.5e-3 |
NPS | quadratic, Cd=5.5e-3 | ||
NYU | |||
POL | linear in To and Tf (McPhee, 1992) | explicit freshwater and salt | quadratic, Cd=5.5e-3 |
RAS | quadratic, Cd=5.5e-3 | ||
RCO | bulk (Omstedt & Wettlaufer, 1992) | salt rejection, freshwater flux, ice at 4 ppt | quadratic, Cd=3.5e-3 |
UCL | linear in ocean T - freezing T | salt rejection, freshwater flux | quadratic, Cd=5.5e-3 |
UW |
* LANL: heat, salt: ice formation in ocean (frazil) maintains temperature at
or above salinity-dependent freezing temperature, up to maximum = linear in
ocean T - freezing T, coef 0.575
code | SW form | albedo | SW penetration | LW form |
AWI | ||||
GSFC | Parkinson and Washington, 1979 | separate up & down, PW | ||
ICMMG | daily averaged | O=.1, MI=.68, I=.7, MS=.77, S=.81 | yes | Rosati & Miyakoda, 1988 |
IOS | daily averaged | O=.1, MI=.5, I=.6, MS=.7, S=.8 | yes | Rosati & Miyakoda, 1988 |
LANL | O=.1, MI=.68, I=.7, MS=.77, S=.81 | yes | Rosati & Miyakoda, 1988 | |
LU | daily averaged | O=.1, MI=.5, I=.6, MS=.7, S=.8 | yes | Rosati & Miyakoda, 1988 |
NERSC | daily averaged | .03<O<.45, MI<=.6, I<=.7, MS=.75, S=.85 | yes | * |
NPS | Zhang et al, 1999 | |||
NYU | daily averaged | O=.1, MI=.4, I=.5, MS=.7, S=.8 | Holland, 1993 | |
POL | daily averaged, Zillman (1972), Shine (1984)] | O=.1, MI=.5, I=.6, MS=.7, S=.8 | yes | net (Berliand & Berliand, 1952) |
RAS | daily averaged | O=.1, MI=.5, I=.65, MS=.75, S=.82 | yes | |
RCO | daily cycle, (Bodin, 1979; Laevastu, 1960) | O=Fresnel, MI=0.3, I=0.7, MS=0.77, S=0.87 | yes | Maykut and Church (1973) |
UCL | daily averaged | O=.1, MI=.5, I=.6, MS=.7, S=.8 | yes | separate up & down |
UW |
when 5 broadband albedo are used, "O"=ocean, "MI"=melting ice, "I"=ice, "MS"=melting snow, "S"=snow
emissivities: O=.97, I=.98, S=.98 (except NYU: I=.97, S=.99)
* NERSC: similar procedure as for the turbulent air-sea fluxes
Beckmann, A., and R. D\"oscher, A method for improved representation of dense water spreading over topography in geopotential-coordinate models, J. Phys. Oceanogr., 27, 581-591, 1997.
Bentsen, M. and H. Drange, 2000: Parameterizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In RegClim General Technical Report No. 4, Norwegian Institute for Air Research, Kjeller, Norway, 149-158.
Berliand, M. E., and T. G. Berliand, 1952: Measurement of the effective radiation of the Earth with varying cloud amounts, Izv. Akad. Nauk SSSR Ser. Geofiz., 1, 1952.
Bodin, S., A predictive numerical model of the atmospheric boundary layer based on the turbulent energy equation, Report Meteorology and Climatology, SMHI, Norrk\"oping, Sweden, 13, 139 pp, 1979.
Bryan, K., and M.D. Cox, An approximate equation of state for numerical models of ocean circulation, J. Phys. Oceanogr., 2, 510-514, 1972.
Bryan, K., J. K. Dukowicz and R. D. Smith. 1999: On the Mixing Coefficient in the Parameterization of Bolus Velocity. J. Phys. Oceanogr., Vol. 29, No. 9, pp. 2442-2456.
Brydon, D., S. Sun, and R. Bleck, 1999: A new approximation of the equation of state for seawater, suitable for numerical ocean models. J. Geophys. Res., 104(C1), 1537-1540.
Campin, J-M and H. Goosse, 1999: Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate, Tellus, 51A, 412-430.
Gargett, AE and G. Holloway. 1984: Dissipation and diffusion by internal wave breaking, J. Mar. Res., 42, 15-27.
Gaspar, JPO, vol. 18, 1988, p. 161-180.
Holland, D.M., and A. Jenkins, 2001: Adaptation of an isopycniccoordinate ocean model for the study of Circulation beneath ice shelves.Mon. Wea. Rev., 129, 1905-1927.
Holland, D.M., 2001: An impact of sub-grid-scale ice-ocean dynamics on sea-ice cover. J. Climate, 14(7), 1585-1601.
Holland, D.M., L.A. Mysak, D.K. Manak, and J. M. Oberhuber, 1993: A sensitivity study of a dynamic-thermodynamic sea-ice model. J. Geophys.Res., 98, 2561-2586.
Holloway, G. and T. Sou, 2002: Has Arctic sea ice rapidly thinned?J. Climate, 15, 1691-1701.
Jackett-McDougall, 1995 JTECH, Vol.12, pp 381-389.
Jiang, G.-S. and C.-W. Shu, 1996: Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202-228.
Kalnay, E. et al., 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77(3), 437-471.
Karcher, M. J., Gerdes, R., Kauker, F., Koeberle, C.(2002). Arcticwarming - Evolution and Spreading of the 1990s warm event in the Nordic Seas and the Arctic Ocean, Journal of Geophysical Research, in press.
Koeberle, C., Gerdes, R. (2002). Mechanisms determining the variability of Arctic sea ice conditions and export, Journal of Climate, in revision.
Large, W. G. and S. Pond. 1981: Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr., Vol. 11, No. 3, pp. 324-336.
Large, W. G. and S. Pond. 1982: Sensible and Latent Heat Flux Measurements over the Ocean. J. Phys. Oceanogr., Vol. 12, No. 5, pp. 464-482.
Lipscomb, W. H. and E. C. Hunke, Monthly Weather Review 132, 1341-1354, 2004
Laevastu T (1960) Factors affecting the temperature of the surface layer of the sea. Commentat Phys Math 25:8-134
McDougal & Dewar (1998), vol 28, p.1458-1480.
McPhee, M. G., 1992: Turbulent heat flux in the upper ocean under sea ice, J. Geophys. Res., 97, C4, 5365-5379.
Maykut, G.A., and P. Church, Radiation climate of Barrow, Alaska, 1962-1966, J. Appl. Meteorol., 12, 620-628, 1973.
Maykut, G. A. and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100(C12), 24,691-24,703.
Meier, H.E.M., On the parameterization of mixing in three-dimensional Baltic Sea models, J. Geophys. Res., 106, 30997-31016, 2001.
Merryfield, W. J., G. Holloway and A. E. Gargett, 1999: A global ocean model with double-diffusive mixing. J. Phys. Oceanogr., 29, 1124-1142.
Merryfield, W. J., and G. Holloway, 2002: Application of an accurate advection
algorithm to sea-ice modeling. Ocean Modelling, 5, 1-15.
MICOM ocean model is described in a chapter by R. Bleck entitled"Ocean
Modeling in Isopycnic Coordinates", in the book "Ocean Modeling and
Parameterization", NATO, ASI, 1998, p. 423-448, edited by E. Chassingnet
and J. Verron.
Oberhuber, 1993, JPO, vol. 23, p. 808-829.
Omstedt A, Wettlaufer JS (1992) Ice growth and oceanic heat flux, models and measurements. J Geophys Res 97:9383-9390
Paluskiewicz, T. and R. D. Romea, 1997: A one-dimensional model for the parameterization of deep convection in the ocean, Dynamics of Atmospheres and Oceans, 26, 95-130.
Parkinson, C. L., and W. M. Washington, 1979: A large-scale numerical model of sea ice, J. Geophys. Res., 84, C1, 311-337.
Prather, M. C., 1986: Numerical advection by conservation of second-order moments, J. Geophys. Res., 91, D6, 6671-6681.
Shine, K. P., 1984: Parameterization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo, Quart. J. Roy. Meteor. Soc., 110, 465, 747-764.
Stevens, D.P., On open boundary conditions for three dimensional primitive equation ocean circulation models, Geophys. Astrophys. Fluid Dynamics, 51, 103-133, 1990.
Webb, D.J., B.A. de Cuevas and C.S. Richmond, Improved advection schemes for ocean models, J. Atmos. Oceanic Technol., 15, 1171-1187, 1998.
Zhang, J., W.D. Hibler, M. Steele, and D.A. Rothrock: Arctic ice-ocean modeling with and without climate restoring, J. Phys. Oceanogr., 28, 191-217, 1998.
Zhang, J., D.A. Rothrock, and M. Steele: Recent changes in Arctic Sea ice: The interplay between ice dynamics and thermodynamics, J. Climate, 13, 3099-3114, 2000.
Zillmann, J.W., 1972: A study of some aspects of the radiation and the heat budgets of the southern hemisphere oceans. Meteorol. Stud. 26 Bur. Meteorol. Dep. of the Interior, Canberra, Australia, 562 pp.
33 41310 900 1515.
20 ? ? ?
29 6097 43200 4.0
40 540900 1800 *20% 2404.
30 116736 1200 2918.
11 3600 7200 5.5
16 1715 3600 7.6
21 13260 720 387.
to Planetwater |
or | more research |